ORDINAMENTO 2003 - PROBLEMA 2

Sia f la funzione definita da: $f(x) = \frac{2x+1}{x^2+m+|m|}$, con m parametro reale. Notiamo che:

$$f(x) = \frac{2x+1}{x^2} \quad se \quad m \le 0$$

$$f(x) = \frac{2x+1}{x^2+2m} \quad se \quad m > 0$$

a)

Dominio

Se
$$m > 0$$
, $x^2 + 2m \neq 0 \ \forall x \in \Re$
Se $m \leq 0$, $x^2 \neq 0$ se $x \neq 0$

Derivabilità

Trattandosi di una funzione razionale fratta, dove esiste è derivabile.

b)

Se m > 0:

$$f(x) = \frac{2x+1}{x^2+2m}$$
, $f'(x) = \frac{-2x^2-2x+4m}{(x^2+2m)^2}$, $f'(1) = 0$ $se-2-2+4m=0$, $m=1$

Se $m \leq 0$

$$f(x) = \frac{2x+1}{x^2}$$
, $f'(x) = -\frac{2(x+1)}{x^3}$, $f'(1) = 0$ se $-4 = 0$, MAI

c)

La funzione da studiare si ottiene per m=1 ed ha equazione: $f(x) = \frac{2x+1}{x^2+2}$

Dominio: $-\infty < x < +\infty$

Intersezioni con gli assi: $\left(0; \frac{1}{2}\right)$, $\left(-\frac{1}{2}; 0\right)$

Eventuali simmetrie notevoli: $f(-x) = \frac{-2x+1}{x^2+2}$, né pari né dispari.

Segno della funzione: y>0 se $x > -\frac{1}{2}$; y < 0 se $x < -\frac{1}{2}$

Limiti agli estremi del dominio

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{2x}{x^2} = \lim_{x \to \pm \infty} \frac{2}{x} = 0^{\pm}$$

(quindi abbiamo y=0 è asintoto orizzontale per $x \to \pm \infty$; non ci sono altri asintoti).

Studio della derivata prima

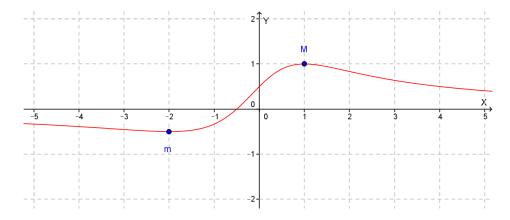
La funzione $f(x) = \frac{2x+1}{x^2+2}$ è continua e derivabile per ogni x. $y' = \frac{-2x^2-2x+4}{(x^2+2)^2}$ $y' = 0 \text{ se } -2x^2-2x+4=0, \ x=-2, x=1 \ (punti\ a\ tangente\ orizzontale)$ $y' > 0 \text{ se } -2x^2-2x+4>0 \ \Rightarrow -2 < x < 1 \ (crescente)$ $y' < 0 \text{ se } x < -2 \text{ oppure } x > 1 \ (crescente)$ Minimo relativo $\left(-2; \frac{1}{2}\right)$ Massimo relativo $\left(1; 1\right)$

Studio della derivata seconda

$$y'' = \frac{2(2x^3 + 3x^2 - 12x - 2)}{(x^2 + 2)^3}$$

y'' = 0 se $2x^3 + 3x^2 - 12x - 2 = 0$: questa equazione ha almeno una soluzione reale (essendo un'equazione razionale intera di grado dispari) ed al massimo tre soluzioni reali; quindi ci sono da uno a tre flessi. Dallo studio precedente (limiti, massimi e minimi) si deduce che ci sono tre flessi: uno prima del minimo, uno tra il minimo ed il massimo ed uno dopo il massimo.

Grafico della funzione $f(x) = \frac{2x+1}{x^2+2}$

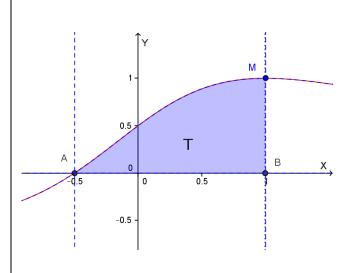


Si noti che abbiamo un flesso per x<2, un altro tra -2 e 1 ed un terzo per x>1.

d)

Si chiede ora di calcolare l'area della regione finita di piano T delimitata dal grafico della funzione, dall'asse x e dalla retta di equazione x=1.

2



$$Area(T) = \int_{-\frac{1}{2}}^{1} \frac{2x+1}{x^2+2} dx = \int_{-\frac{1}{2}}^{1} \frac{2x}{x^2+2} dx +$$

$$+ \int_{-\frac{1}{2}}^{1} \frac{1}{x^2 + 2} dx = \left[\ln(x^2 + 2)\right]_{-\frac{1}{2}}^{1} +$$

$$+\frac{1}{2}\int_{-\frac{1}{2}}^{1}\frac{1}{1+\left(\frac{x}{\sqrt{2}}\right)^{2}}dx = \ln(3) - \ln\left(\frac{9}{4}\right) +$$

$$\left| + \frac{\sqrt{2}}{2} \int_{-\frac{1}{2}}^{1} \frac{\frac{1}{\sqrt{2}}}{1 + \left(\frac{x}{\sqrt{2}}\right)^{2}} dx = \ln\left(\frac{4}{3}\right) + \frac{\sqrt{2}}{2} \left[\operatorname{arctg} \frac{x}{\sqrt{2}} \right]_{-\frac{1}{2}}^{1} =$$

$$= ln\left(\frac{4}{3}\right) + \frac{\sqrt{2}}{2} \left(arctg\left(\frac{1}{\sqrt{2}}\right) - arctg\left(-\frac{1}{2\sqrt{2}}\right)\right) = \frac{1}{2} \left(arctg\left(\frac{1}{\sqrt{2}}\right) - arctg\left(\frac{1}{\sqrt{2}}\right)\right) = \frac{1}{2} \left(arctg\left(\frac{1}{\sqrt{2}}\right) - arctg\left(\frac{1}{\sqrt{2}}\right)\right)$$

$$= ln\left(\frac{4}{3}\right) + \frac{\sqrt{2}}{2}\left(arctg\left(\frac{1}{\sqrt{2}}\right) + arctg\left(\frac{1}{2\sqrt{2}}\right)\right) =$$

$$= \ln\left(\frac{4}{3}\right) + \frac{\sqrt{2}}{2} \operatorname{arctg}\left(\frac{1}{\sqrt{2}}\right) + \frac{\sqrt{2}}{2} \operatorname{arctg}\left(\frac{1}{2\sqrt{2}}\right) \cong \mathbf{0.96} \ \mathbf{u^2}$$