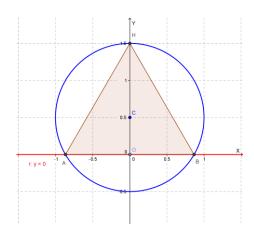
Scuole italiane all'estero (Europa) 2004 – PROBLEMA 1

In un piano sono assegnati una retta r ed un punto H la cui distanza da r è 3/2 rispetto ad una data unità di misura delle lunghezze.

a)

Dopo aver riferito il piano ad un conveniente sistema di assi cartesiani (Oxy), determinare sulla retta r due punti A e B tali che il triangolo HAB sia equilatero e trovare l'equazione della circonferenza circoscritta al triangolo.



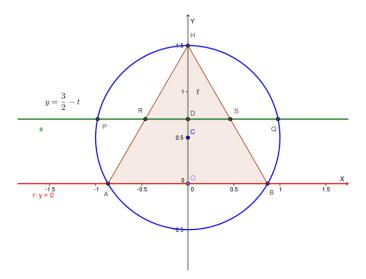
Siccome l'altezza del triangolo equilatero inscritto in una circonferenza è uguale ai 3/2 del raggio, fissiamo il sistema di riferimento in modo che H stia sull'asse y con coordinate $H=\left(0;\frac{3}{2}\right)$. In tal modo la circonferenza ha centro in $C=\left(0;\frac{1}{2}\right)$ e raggio r=1 e la retta r ha equazione y=0. I punti A e B hanno coordinate: $A=\left(-\frac{\sqrt{3}}{2};0\right)$, $B=\left(\frac{\sqrt{3}}{2};0\right)$. L'equazione della circonferenza è: $x^2+\left(y-\frac{1}{2}\right)^2=1$, $x^2+y^2-y-\frac{3}{4}=0$

b)

Determinare l'equazione in t che risolve la seguente questione: «Condurre, ad una distanza t dal punto H, la retta s parallela ad r in modo che intersechi la circonferenza e il triangolo suddetti e, indicate con PQ ed RS le corde che su tale retta s intercettano nell'ordine la circonferenza e il triangolo medesimi, risulti: $\overline{PQ} = k \ \overline{RS}$, dove k è un parametro reale assegnato».

Le condizioni imposte impongono la seguente condizione su t: $0 < t \le \frac{3}{2}$.

La retta s ha equazione: $y = \frac{3}{2} - t$, $con \ 0 < t \le \frac{3}{2}$.



Cerchiamo le intersezioni P e Q fra la retta s e la circonferenza:

$$P, Q: \begin{cases} y = \frac{3}{2} - t \\ x^2 + y^2 - y - \frac{3}{4} = 0 \end{cases}, \quad x^2 + \left(\frac{3}{2} - t\right)^2 - \frac{3}{2} + t - \frac{3}{4} = 0 ,$$

$$x^2 = -t^2 + 2t$$
, $x = \pm \sqrt{2t - t^2}$

Quindi:
$$P = \left(-\sqrt{2t - t^2}; \frac{3}{2} - t\right), \ Q = \left(\sqrt{2t - t^2}; \frac{3}{2} - t\right).$$

Cerchiamo le intersezioni R ed S fra la retta s e la retta AH che ha equazione $y = mx + \frac{3}{2} \text{ con } m = tg60^{\circ} = \sqrt{3} \text{ , quindi: } y = \sqrt{3} x + \frac{3}{2} .$

$$R: \begin{cases} y = \frac{3}{2} - t \\ y = \sqrt{3}x + \frac{3}{2} \end{cases}; \quad \sqrt{3}x + \frac{3}{2} = \frac{3}{2} - t , \quad x = -\frac{t}{\sqrt{3}} : R = \left(-\frac{t}{\sqrt{3}}; \frac{3}{2} - t\right) ; S = \left(\frac{t}{\sqrt{3}}; \frac{3}{2} - t\right)$$

Si ha quindi:

 $PQ=2\sqrt{2t-t^2}$, $RS=\frac{2t}{\sqrt{3}}$. L'equazione $\overline{PQ}=k\ \overline{RS}$ è quindi:

$$2\sqrt{2t-t^2} = k\frac{2t}{\sqrt{3}}, \quad \sqrt{6t-3t^2} = kt, \quad con \ k > 0 \ e \ 0 < t \le \frac{3}{2}.$$

Osserviamo che se $t \to 0^+$ risulta: $k = \lim_{t \to 0^+} \frac{\sqrt{6t - 3t^2}}{t} = \lim_{t \to 0^+} \frac{\sqrt{6t}}{t} = +\infty$. Scuole italiane all'estero (Europa) 2004

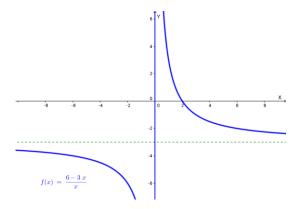
L'equazione in t che risolve la questione proposta è quindi la seguente:

$$6t - 3t^2 = k^2t^2$$
, $(3 + k^2)t^2 - 6t = 0$.

c)

Posto, nell'equazione trovata, $t = X e k^2 = Y$, esprimere Y in funzione di X e, **prescindendo dalla questione geometrica**, studiare la funzione Y = Y(X) così ottenuta e disegnarne l'andamento.

Con $t = X e k^2 = Y$ l'equazione $6t - 3t^2 = k^2t^2$ diventa: $6X - 3X^2 = YX^2$ che si spezza in X = 0 ($non\ accettabile$) $e\ Y = \frac{6-3X}{X}$. Quest'ultima è una funzione omografica di centro (0; -3), asintoti di equazione: X = 0 $e\ Y = -3$ e passante per il punto di coordinate (2; 0). Grafico:



d)

Utilizzando tale andamento, stabilire per quali valori di k si hanno valori di t che risolvono la questione di cui al punto b) e quanti sono questi valori di t.

Ricordiamo che le limitazioni su t e k sono: $0 < t \le \frac{3}{2}$ e k > 0. Essendo t=X, si hanno valori di t che risolvono la questione di cui al punto b) se: $0 < X \le \frac{3}{2}$.

Se X=t=3/2 abbiamo
$$Y = k^2 = \frac{6-3X}{X} = \frac{6-\frac{9}{2}}{\frac{3}{2}} = 1$$
: $k = 1$.

Se $0 < X = t < \frac{3}{2}$ abbiamo 1 soluzione per Y > 1, quindi per k > 1.

In generale quindi si hanno valori di t che risolvono la questione per $k \ge 1$ (1 soluzione per $k \ge 1$).

Con la collaborazione di Angela Santamaria