

www.matefilia.it

Scuole italiane all'estero (Calendario australe) 2007 - PROBLEMA 2

Si consideri la funzione f così definita:

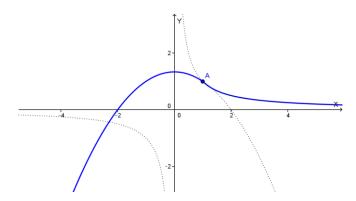
$$f(x) = \begin{cases} \frac{4 - x^2}{3} & \text{se } x \le 1\\ \frac{1}{x} & \text{se } x > 1 \end{cases}$$

1)

Si disegni il grafico di f.

Per $x \le 1$ abbiamo la parabola di equazione: $y = -\frac{1}{3}x^2 + \frac{4}{3}$, che ha la concavità verso il basso, vertice sull'asse y con ordinata 4/3 e intersezioni con l'asse x nei punti con ascissa le soluzioni dell'equazione: $-\frac{1}{3}x^2 + \frac{4}{3} = 0$, $x^2 = 4$, $x = \pm 2$.

Per x > 1 abbiamo l'iperbole di equazione $y = \frac{1}{x}$. Il grafico di f è quindi:



2)

Si dica se f soddisfa le condizioni del teorema del valor medio (o teorema di Lagrange) – da Giuseppe Lagrange [Torino, 25 gennaio 1736 – Parigi, 10 aprile 1813] sull'intervallo [0; 2] e quali sono, se esistono, gli eventuali valori medi in tale intervallo.

Dobbiamo verificare se la funzione è continua nell'intervallo chiuso [0; 2] e derivabile nell'aperto (0; 2). Il punto da analizzare è x=1. Continuità:

$$f(1) = 1$$
, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{4 - x^{2}}{3} = 1$, $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{1}{x} = 1$: continua.

Derivabilità:

Se x<1:
$$f'(x) = -\frac{2}{3}x$$
; $f'(1) = -\frac{2}{3}$

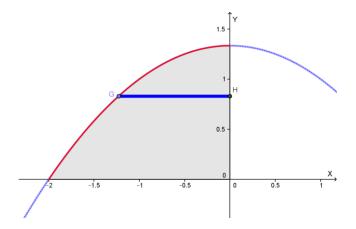
Se x<1:
$$f'(x) = -\frac{2}{3}x$$
; $f'_{-}(1) = -\frac{2}{3}$
Se x>1: $f'(x) = -1/x^2$; $f'_{+}(1) = -1$: NON derivabile

Quindi NON sono soddisfatte le ipotesi del teorema di Lagrange.

3)

Il dominio piano del Il quadrante delimitato dal grafico di f e dagli assi coordinati è la base di un solido S le cui sezioni, ottenute tagliando S con piani perpendicolari all'asse y, sono tutte quadrate. Si calcoli il volume di S.

Il dominio è rappresentato nella seguente figura:



Il volume del solido si ottiene mediante il seguente integrale:

$$V = \int_0^{\frac{4}{3}} A(y) \ dy$$

dove A(y) è l'area del quadrato di lato GH.

Essendo $y = \frac{4-x^2}{3}$, $x^2 = 4 - 3y = A(y)$. Quindi:

$$A(y) = x^2 = 4 - 3y$$

$$V = \int_0^{\frac{4}{3}} A(y) \, dy = \int_0^{\frac{4}{3}} (4 - 3y) \, dy = \left[4y - \frac{3}{2}y^2 \right]_0^{\frac{4}{3}} = \frac{16}{3} - \frac{8}{3} = \frac{8}{3} \ u^2 = V$$

Con la collaborazione di Angela Santamaria