www.matefilia.it

SCUOLE ITALIANE ALL'ESTERO (EUROPA) 2008 - PROBLEMA 2

 $y' = \frac{ax}{(1+4x^2)^2}$: dobbiamo trovare la funzione y = f(x) il cui grafico γ passa per i punti

$$\left(\frac{1}{2};1\right)$$
 e (0;2).

Risulta:
$$y = \int y' dx = \int \frac{ax}{(1+4x^2)^2} dx = \frac{a}{8} \int 8x(1+4x^2)^{-2} dx = \frac{a}{8} \left(\frac{\left(1+4x^2\right)^{-1}}{-1} \right) + k$$

Quindi: $y = \frac{-a}{8(1+4x^2)} + k$; impongo il passaggio per i due punti:

$$\begin{cases} 1 = \frac{-a}{16} + k \\ 2 = \frac{-a}{8} + k \end{cases} \Rightarrow \cdots \begin{cases} k = 0 \\ a = -16 \end{cases}$$
 Quindi la funzione richiesta è: $y = \frac{2}{1 + 4x^2}$

1)

 $y = \frac{2}{1+4x^2}$. Si tratta di una funzione pari, definita su tutto R, sempre positiva, il cui grafico taglia l'asse delle ordinate nel punto (0;2).

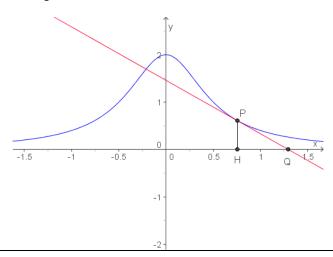
I limiti a + e - infinito sono uguali a 0⁺.

Studio della derivata prima: $y' = \frac{-16x}{(1+4x^2)^2}$; per $x \le 0$ la funzione è crescente, per $x \ge 0$ decrescente; x=0 è punto di massimo (assoluto).

Studio della derivata seconda: $y'' = \frac{16(12x^2 - 1)}{(1 + 4x^2)^3}$; la funzione risulta concava verso l'alto

quando $12x^2 - 1 \ge 0 \Rightarrow x \le -\sqrt{\frac{1}{12}} \lor x \ge \sqrt{\frac{1}{12}}$; $x = \pm \sqrt{\frac{1}{12}}$ punti di flesso (con ordinata 3/2).

Il grafico della funzione è il seguente:



2)

Indichiamo con $P\!\left(t; \frac{2}{1+4t^2}\right)$ il generico punto di γ . Per l'evidente simmetria, possiamo considerare t>0. La tangente in P ha equazione:

$$y - \frac{2}{1 + 4t^2} = \frac{-16t}{(1 + 4t^2)^2}(x - t)$$
; con y = 0 troviamo $x_Q = \frac{12t^2 + 1}{8t}$. Essendo $x_H = t$ risulta:

$$\overline{HQ} = x_Q - x_H = \frac{12t^2 + 1}{8t} - t = \frac{4t^2 + 1}{8t} = \frac{t}{2} + \frac{1}{8t}$$

Troviamo per quale valore di t tale distanza assume il valore minimo.

PER VIA ELEMENTARE

Essendo $\overline{HQ} = \frac{t}{2} + \frac{1}{8t}$, si osserva che è la somma di due quantità il cui prodotto è costante.

Infatti: $\left(\frac{t}{2}\right)\left(\frac{1}{8t}\right) = \frac{1}{16}$: ma se il prodotto di due quantità (positive) è costante la loro somma è

minima quando sono uguali; pertanto il minimo richiesto si ha quando $\frac{t}{2} = \frac{1}{8t} \Rightarrow t = \frac{1}{2}$.

In conclusione: la lunghezza del segmento HQ è minima quando l'ascissa di P è uguale a $\pm \frac{1}{2}$.

CON LE DERIVATE

Consideriamo la funzione di equazione $y = \frac{t}{2} + \frac{1}{8t}$; la sua derivata è: $y' = \frac{1}{2} - \frac{1}{8t^2}$

Risulta $y' \ge 0$ $per \ t \le -\frac{1}{2} \lor t \ge \frac{1}{2}$; avendo considerato t > 0 la funzione è crescente per $t \ge \frac{1}{2}$ e decrescente per $0 < t \le \frac{1}{2}$, quindi il minimo richiesto si ha per $t = \frac{1}{2}$.

3)

L'area richiesta si ottiene calcolando l'integrale seguente:

$$\int_{0}^{+\infty} \frac{2}{1+4x^{2}} dx = \int_{0}^{+\infty} \frac{2}{1+4x^{2}} dx = \lim_{k \to +\infty} \int_{0}^{k} \frac{2}{1+4x^{2}} dx = \lim_{k \to +\infty} \int_{0}^{k} \frac{2}{1+(2x)^{2}} dx = \lim_{k \to +\infty} \left[arctg(2x) \right]_{0}^{k} = \lim_{k \to +\infty} arct(2k) = \frac{\pi}{2}$$

Con la collaborazione di Angela Santamaria