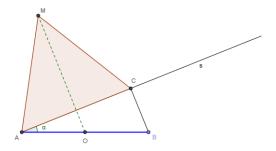


www.matefilia.it

PNI 2011 - SESSIONE STRAORDINARIA - PROBLEMA 1

È dato il segmento AB = 2. Dal punto A si tracci una semiretta s formante un angolo acuto α con la direzione AB e si denoti con C la proiezione ortogonale del punto B sulla semiretta s. Si costruisca su AC, esternamente al triangolo ABC, un triangolo equilatero ACM.



a)

Detto O il punto medio di AB, si calcoli il valore y di $0M^2$ e lo si esprima in funzione di $x = \tan \alpha$ controllando che risulta:

$$y = \frac{\left(x + \sqrt{3}\right)^2}{x^2 + 1} \ .$$

Risulta: $AM = AC = AB \cdot \cos(\alpha) = 2\cos(\alpha)$; $0 \le \alpha < \frac{\pi}{2}$. Per il teorema del coseno, nel triangolo AOM abbiamo:

$$\begin{split} OM^2 &= AM^2 + AO^2 - 2AM \cdot AO \cdot \cos\left(\alpha + \frac{\pi}{3}\right) = 4\cos^2(\alpha) + 1 - 4\cos(\alpha)\cos\left(\alpha + \frac{\pi}{3}\right) \\ OM^2 &= 4\cos^2(\alpha) + 1 - 4\cos(\alpha)\left(\cos\alpha\cos\frac{\pi}{3} - \sin\alpha\sin\frac{\pi}{3}\right) = \\ &= 4\cos^2(\alpha) + 1 - 4\cos(\alpha)\left(\frac{1}{2}\cos\alpha - \frac{\sqrt{3}}{2}\sin\alpha\right) = 4\cos^2\alpha + 1 - 2\cos^2\alpha + 2\sqrt{3}\sin\alpha\cos\alpha \end{split}$$

$$= \frac{2 + 2 \tan^{2} \alpha + 1 - \tan^{2} \alpha + 2\sqrt{3} \tan \alpha}{1 + \tan^{2} \alpha} = \frac{\tan^{2} \alpha + 2\sqrt{3} \tan \alpha + 3}{1 + \tan^{2} \alpha} = \frac{\left(\tan \alpha + \sqrt{3}\right)^{2}}{1 + \tan^{2} \alpha}$$

Quindi:
$$y = \frac{(x+\sqrt{3})^2}{x^2+1}$$
, con $x \ge 0$.

b)

Prescindendo dalla questione geometrica, si studi la funzione f(x) e se ne tracci il grafico Γ .

$$f(x) = \frac{\left(x + \sqrt{3}\right)^2}{x^2 + 1}$$

Dominio:

La funzione è definita su tutto R e non è pari né dispari.

Intersezioni con gli assi:

Se x=0: y=3; se y=0:
$$x = -\sqrt{3}$$
 (doppio)

Positività:

La funzione è positiva per ogni $x \neq -\sqrt{3}$ (per $x = -\sqrt{3}$ si annulla).

Limiti:

$$\lim_{x \to +\infty} \frac{(x + \sqrt{3})^2}{x^2 + 1} = \lim_{x \to +\infty} \frac{x^2}{x^2} = 1$$

Asintoti:

Asintoto y=1 per $x \to +\infty$ e per $x \to -\infty$

Derivata prima:

$$f'(x) = \frac{-2\sqrt{3}x^2 - 4x + 2\sqrt{3}}{(x^2 + 1)^2} \ge 0$$
 se $\sqrt{3}x^2 + 2x - \sqrt{3} \le 0$, $-\sqrt{3} \le x \le \frac{\sqrt{3}}{3}$

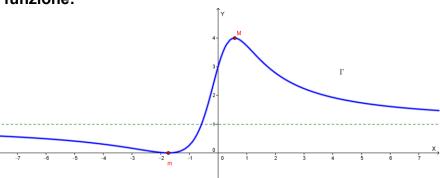
Pertanto la funzione è crescente se $-\sqrt{3} < x < \frac{\sqrt{3}}{3}$, decrescente nella parte rimanente. Abbiamo un minimo relativo (ed assoluto) per $x = -\sqrt{3}$, con ordinata 0, ed un massimo relativo (ed assoluto) per $x = \frac{\sqrt{3}}{3}$, con ordinata 4.

Derivata seconda:

$$f''(x) = \frac{4\sqrt{3}x^3 + 12x^2 - 12\sqrt{3}x - 4}{(x^2 + 1)^3} \ge 0 \quad \text{se } \sqrt{3}x^3 + 3x^2 - 3\sqrt{3}x - 1 \ge 0$$

Il segno della derivata seconda non si può determinare in modo elementare ma, dalle altre informazioni sullo studio della funzione, si può facilmente dedurre la presenza di tre flessi.

Grafico della funzione:



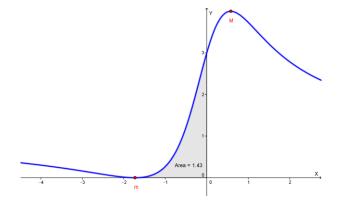
c)

Si dica per quale valore di α si ha il massimo di OM.

OM è massimo quando lo è OM^2 , che è la y della funzione precedentemente studiata. Abbiamo visto che y è massima per $x=\frac{\sqrt{3}}{3}$. Essendo $x=\tan\alpha$, il massimo di OM si ha quando $\tan\alpha=\frac{\sqrt{3}}{3}$, da cui $\alpha=\frac{\pi}{6}$, che è un valore accettabile per i limiti sull'angolo visti all'inizio.

d)

Si determini l'area della superficie piana, finita, delimitata dagli assi cartesiani e dall'arco di Γ i cui estremi hanno ascisse $-\sqrt{3}$ e 0.



L'area richiesta si ottiene mediante il seguente calcolo integrale:

Area =
$$\int_{-\sqrt{3}}^{0} \frac{(x+\sqrt{3})^{2}}{x^{2}+1} dx$$

Calcoliamo l'integrale indefinito:

$$\int \frac{\left(x+\sqrt{3}\right)^2}{x^2+1} \, dx = \int \frac{x^2+3+2\sqrt{3}\,x}{x^2+1} \, dx = \int \frac{x^2+1}{x^2+1} \, dx + \int \frac{2}{x^2+1} \, dx + \int \frac{2\sqrt{3}\,x}{x^2+1} \, dx = \int \frac{x^2+3+2\sqrt{3}\,x}{x^2+1} \, dx = \int \frac{x^2+3+2\sqrt{3}\,x}{x^2+1}$$

$$= x + 2arctg(x) + \sqrt{3}\ln(x^2 + 1) + c$$

Quindi:

$$Area = \left[x + 2arctg(x) + \sqrt{3}\ln(x^2 + 1)\right]_{-\sqrt{3}}^{0} = 0 - \left(-\sqrt{3} + 2arctg(-\sqrt{3}) + \sqrt{3}\ln(x^2 + 1)\right) = 0$$

$$= \sqrt{3} - 2\left(-\frac{\pi}{3}\right) - \sqrt{3}\ln 4 = \left(\sqrt{3} + \frac{2}{3}\pi - \sqrt{3}\ln 4\right)u^2 \cong 1.4253\ u^2 = Area$$

Con la collaborazione di Angela Santamaria