www.matefilia.it

Calendario Boreale 1 (EUROPA) 2014

PROBLEMA 2

Si consideri, in un riferimento cartesiano 0xy, la funzione

$$f(x) = x(x-1)(x-k)$$
, con $k \in \mathbb{R}$

1)

Si dica come varia il grafico di f(x) al variare di k ($k \le 0$, $0 < k \le 1$, $k \ge 1$).

$$f(x) = x(x-1)(x-k) = (x^2-x)(x-k) = x^3 - kx^2 - x^2 + kx = x^3 - (k+1)x^2 + kx$$

Dominio: $-\infty < x < +\infty$

Intersezioni con gli assi cartesiani:

$$x = 0$$
 $y = 0$
 $y = 0$ $x = 0.1, k$

Limiti:

 $\lim_{x\to+\infty} f(x) = \pm \infty$ (non esistono asintoti obliqui, trattandosi di una cubica).

Derivata prima:

$$f'(x) = 3x^2 - 2(k+1)x + k = 0$$
 se

$$3x^{2} - 2(k+1)x + k = 0 \quad \frac{\Delta}{4} = (k+1)^{2} - 3k = k^{2} - k + 1 > 0 \quad \forall k$$

$$x = \frac{-k-1 \pm \sqrt{k^{2} - k + 1}}{3};$$

$$f'(x) > 0 \quad se \quad x < \frac{-k-1 - \sqrt{k^{2} - k + 1}}{3} = x_{1} \quad \text{oppure } x > \frac{-k-1 + \sqrt{k^{2} - k + 1}}{3} = x_{2}$$

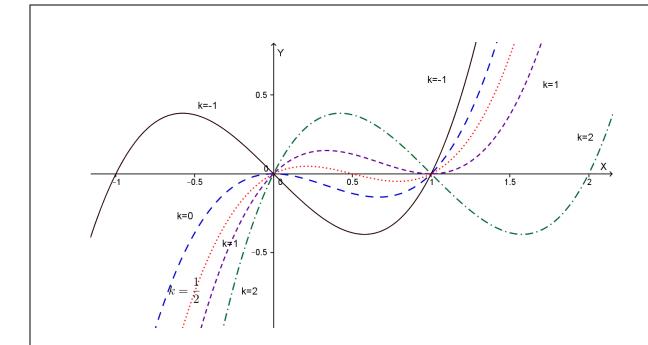
Quindi, $\forall k$, la funzione è crescente per $x < x_1$ oppure $x > x_2$ e pertanto avremo un massimo relativo in x_1 ed un minimo relativo in x_2 .

Derivata seconda:

$$f''(x) = 6x - 2(k+1) > 0$$
 se $x > \frac{k+1}{3}$.

Avremo quindi, $\forall k$, la concavità verso l'alto per $x > \frac{k+1}{3}$ e verso il basso per $x < \frac{k+1}{3}$: flesso in $x = \frac{k+1}{3}$.

Grafico della funzione (per k=-1, k=0, k=1/2, k=1, k=2)



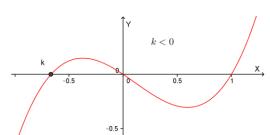
2)

Per quali valori di k le due regioni delimitate dal grafico di f(x)e dall'asse x (una posta al di sopra, l'altra al di sotto dell'asse x) hanno aree uguali?

Dai grafici precedenti deduciamo che si hanno due regioni solo per k<0 0<k<1 k>1 (cioè se $k \neq 0,1$).

Le due aree saranno uguali quando:

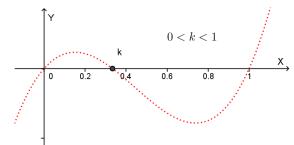
1) Se k<0



 $\int_{k}^{0} f(x) dx = \int_{0}^{1} f(x) dx$ da cui, per simmetria rispetto al flesso, di ascissa

$$x=0,\,\boldsymbol{k}=-\mathbf{1}$$

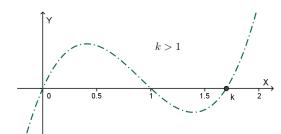
2) **0<k<1**



 $\int_{0}^{k} f(x)dx = \int_{k}^{1} f(x)dx \quad \text{da cui, per}$ simmetria rispetto al flesso, di ascissa $x = \frac{k+1}{3} = \frac{1}{2}, \ k = \frac{1}{2}$

$$x = \frac{k+1}{3} = \frac{1}{2}, \ k = \frac{1}{2}$$

3) **k>1**:



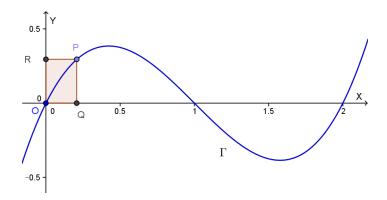
 $\int_0^1 f(x)dx = \int_1^k f(x)dx \quad \text{da cui, per simmetria}$ rispetto al flesso, di ascissa $x = \frac{k+1}{3} = 1$, k = 2

3)

Si ponga k=2 e sia Γ il grafico corrispondente. Preso un punto P di Γ avente ascissa compressa tra 0 e 1, si indichino con Q e R le proiezioni ortogonali di P rispettivamente sull'asse delle ascisse e sull'asse delle ordinate. L'area e il perimetro del rettangolo QPR ammettono entrambi un valore massimo?

$$f(x) = x(x-1)(x-2) = x^3 - 3x^2 + 2x$$

Il suo grafico Γ è il seguente:

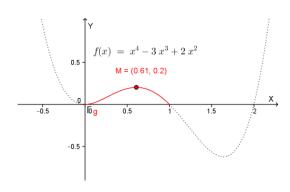


Le coordinate dei vertici del rettangolo sono:

$$P = (x, x^3 - 3x^2 + 2x)$$
, con $0 < x < 1$
 $Q = (x, 0)$, $P = (0, x^3 - 3x^2 + 2x)$, $O = (0, 0)$

$$Area(OQPR) = S = OQ \cdot QP = x(x^3 - 3x^2 + 2x) = x^4 - 3x^3 + 2x^2 \\ S' = 4x^3 - 9x^2 + 4x = x(4x^2 - 9x + 4) \ge 0 \quad se \quad 4x^2 - 9x + 4 \ge 0 \quad \text{(essendo x>0)} \\ 0 < x \le \frac{9 - \sqrt{17}}{8} \ o \ x \ge \frac{\sqrt{17} + 9}{8} > 1 \ \text{: funzione crescente.}$$

Quindi l'area è massima se $x = \frac{9-\sqrt{17}}{8} \approx 0.6$



Analizziamo ora il perimetro del rettangolo.

$$2p(OQPR) = 2 \cdot (OQ + OR) = \max se lo$$
e :

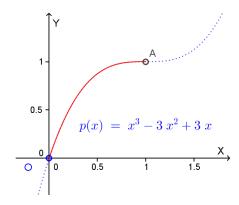
$$p = OQ + OR = x + x^3 - 3x^2 + 2x = x^3 - 3x^2 + 3x \qquad (0 < x < 1)$$

$$p' = 3x^2 - 6x + 3 \ge 0$$
 se $x^2 - 2x + 1 \ge 0$

 $(x-1)^2 \ge 0$: funzione sempre crescente.

Quindi se 0 < x < 1 il perimetro non ammette massimo.

N.B. Se fosse $0 \le x \le 1$ il perimetro sarebbe massimo per x=1 (il rettangolo degenera in un segmento).

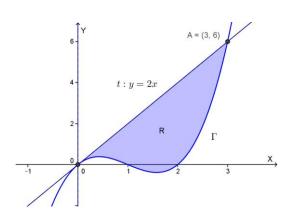


4)

Sia R la regione finita delimitata da Γ e dalla retta t tangente a Γ nell'origine O. Si consideri il solido W di base R, le cui sezioni con piani ortogonali all'asse delle ascisse sono tutti semicerchi i cui diametri hanno gli estremi uno su t l'altro su Γ . Qual è l'altezza massima del solido W? Si calcoli il volume di W.

$$f(x) = x^3 - 3x^2 + 2x$$

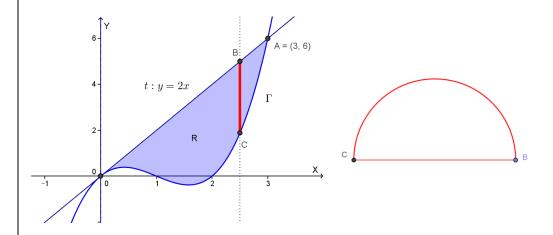
$$f'(x) = 3x^2 - 6x + 2$$
, $f'(0) = 2$, $t: y = 2x$



Il solido W può essere visto come somma di infiniti semicerchi, la cui area è:

$$\left| S(x) = \frac{1}{2} (\pi R^2) = \frac{1}{2} \left[\pi \left(\frac{BC}{2} \right)^2 \right] = \frac{\pi}{8} (y_B - y_C)^2 = \frac{\pi}{8} (2x - (x^3 - 3x^2 + 2x))^2 = \frac{\pi}{8} (2x - (x^3 - 3x)^2 + 2x)^$$

$$= \frac{\pi}{8}(-x^3 + 3x^2)^2 = S(x) \quad con \quad 0 \le x \le 3$$



L'altezza del solido W è il raggio della semicirconferenza di diametro BC, quindi:

$$h(W) = \frac{BC}{2} = \frac{-x^3 + 3x^2}{2}$$
 con $con \quad 0 \le x \le 3$

Dobbiamo trovare h massima.

$$h' = \frac{-3x^2+6x}{2} \geq 0 \;, \quad x^2-2x \leq 0 \;, \quad 0 \leq x \leq 2$$
 Quindi h è crescente in $0 \leq x < 2$ e decrescente in $2 < x \leq 3$:

h è massima per x = 2; h(max) = h(2) = 2

Calcoliamo ora il volume di W:

$$V(W) = \int_0^3 S(x)dx = \int_0^3 \frac{\pi}{8} (-x^3 + 3x^2)^2 dx = \frac{\pi}{8} \int_0^3 (x^6 - 6x^5 + 9x^4) dx =$$

$$= \frac{\pi}{8} \left[\frac{x^7}{7} - x^6 + \frac{9}{5} x^5 \right]_0^3 = \frac{\pi}{8} \cdot \frac{729}{35} = \frac{729}{280} \pi \approx 8.179 u^3 = V(W)$$

Con la collaborazione di Angela Santamaria, Simona Scoleri e Stefano Scoleri