www.matefilia.it

SESSIONE SUPPLETIVA - 2016

PROBLEMA 2

Fissato $k \in \Re$, la funzione $g_k: \Re \to \Re$ è così definita: $g_k = e^{-kx^2}$.

Si indica con Γ_k il suo grafico, in un riferimento cartesiano Oxy.

1)

Descrivi, a seconda delle possibili scelte di $k \in \Re$, l'andamento della funzione g_k .

$$y = g_k = e^{-kx^2}$$

La funzione è definita su tutto l'asse reale per ogni valore di k, è sempre pari ed è sempre positiva; per ogni k risulta y(0) = 1.

Distinguiamo ora i seguenti casi:

k = 0: la funzione diventa la retta di equazione y = 1.

k > 0: $\lim_{x \to \pm \infty} e^{-kx^2} = 0^+$: asintoto orizzontale y=0.

k < 0: $\lim_{x \to \pm \infty} e^{-kx^2} = +\infty$; non c'è asintoto obliquo perché la funzione non è un infinito del primo ordine.

Studio della derivata prima

$$y' = -2kxe^{-kx^2}$$

Se k > 0: y' > 0 per x < 0: la funzione è crescente per x<0 e decrescente per x>0; x=0 è punto di massimo relativo (e assoluto) con ordinata y=1.

Se k < 0: y' > 0 per x > 0: la funzione è crescente per x>0 e decrescente per x<0; x=0 è punto di minimo relativo (e assoluto) con ordinata y=1.

Studio della derivata seconda

$$y'' = -2k \left[e^{-kx^2} + x \left(-2kxe^{-kx^2} \right) \right] = -2ke^{-kx^2} (1 - 2kx^2)$$

Se
$$k > 0$$
: $y'' > 0$ se $1 - 2kx^2 < 0$, $x^2 > \frac{1}{2k}$: $x < -\sqrt{\frac{1}{2k}}$ or $x > \sqrt{\frac{1}{2k}}$

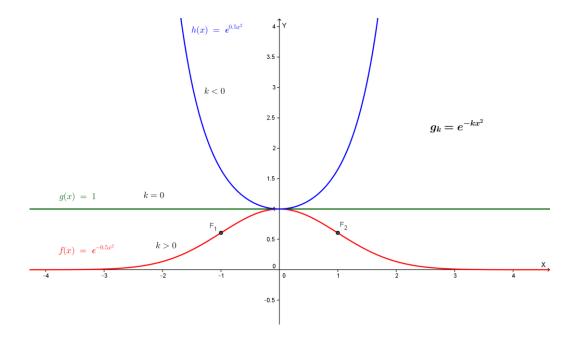
Quindi il grafico volge la concavità verso l'alto se $x < -\sqrt{\frac{1}{2k}}$ or $x > \sqrt{\frac{1}{2k}}$ e verso il basso

se
$$-\sqrt{\frac{1}{2k}} < x < \sqrt{\frac{1}{2k}}$$
; $x = \pm \sqrt{\frac{1}{2k}}$ sono punti di flesso, con ordinata $y = e^{-k\left(\frac{1}{2k}\right)} = \frac{1}{\sqrt{e}}$

Se k < 0: y'' > 0 se $1 - 2kx^2 > 0$: sempre verificato.

Quindi il grafico volge sempre la concavità verso l'alto; non ci sono flessi.

Rappresentiamo nello stesso piano cartesiano le funzioni per k=0, k > 0 (per comodità posiamo k = 0.5), e k < 0 (per esempio k = -0.5):



2)

Determina per quali $k \in \Re$ il grafico Γ_k possiede punti di flesso e dimostra che, in tali casi, le ordinate dei punti di flesso non dipendono dal valore di k e che le rette tangenti nei punti di flesso, qualunque sia k, passano tutte per il punto $T = \left(0; \frac{2}{\sqrt{e}}\right)$.

Abbiamo già dimostrato nel punto precedente che il grafico possiede punti di flesso per k>0: $F=\left(\pm\sqrt{\frac{1}{2k}};\frac{1}{\sqrt{e}}\right)$ e, come si vede, l'ordinata è indipendente da k.

$$y = g_k = e^{-kx^2}$$
 e $y' = -2kxe^{-kx^2}$ con $k > 0$.

La tangente in $F_1 = \left(-\sqrt{\frac{1}{2k}}; \frac{1}{\sqrt{e}}\right)$ ha coefficiente angolare:

$$y'\left(-\sqrt{\frac{1}{2k}}\right) = (2k).\sqrt{\frac{1}{2k}} \cdot \frac{1}{\sqrt{e}} = \sqrt{\frac{2k}{e}}$$

Tangente in F_1 : $y - \frac{1}{\sqrt{e}} = \sqrt{\frac{2k}{e}} \left(x + \sqrt{\frac{1}{2k}} \right)$ e se x = 0 otteniamo $y = \frac{2}{\sqrt{e}}$: la retta passa quindi per T per ogni k.

La tangente in $F_2 = \left(\sqrt{\frac{1}{2k}}; \frac{1}{\sqrt{e}}\right)$ ha coefficiente angolare:

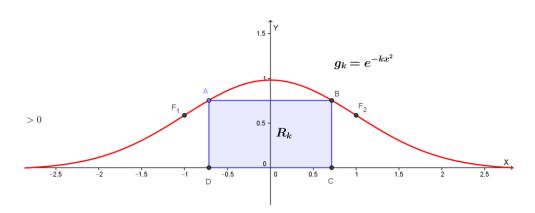
$$y'\left(\sqrt{\frac{1}{2k}}\right) = (-2k).\sqrt{\frac{1}{2k}} \cdot \frac{1}{\sqrt{e}} = -\sqrt{\frac{2k}{e}}$$

Tangente in F_2 : $y - \frac{1}{\sqrt{e}} = -\sqrt{\frac{2k}{e}} \left(x - \sqrt{\frac{1}{2k}} \right)$ e se x = 0 otteniamo $y = \frac{2}{\sqrt{e}}$: la retta passa quindi per T per ogni k.

Assumi nel seguito k > 0. Sia S_k la regione di piano compresa tra l'asse $x \in \Gamma_k$.

3)

Prova che esiste un unico rettangolo \mathcal{R}_k di area massima, tra quelli inscritti in S_k e aventi un lato sull'asse x, e che tale rettangolo ha tra i suoi vertici i punti di flesso di Γ_k . È possibile scegliere k in modo che tale rettangolo \mathcal{R}_k sia un quadrato?



Sia B i vertice del rettangolo situato nel primo quadrante; le sue coordinate sono: $B = (x; e^{-kx^2})$, con $x \ge 0$.

L'area del rettangolo è data da: $Area(ABCD) = 2x \cdot e^{-kx^2}$; tale area è massima quando lo è la funzione:

$$y = x \cdot e^{-kx^2}$$
, $con x \ge 0$ $e k > 0$

Studiamo la derivata prima:

$$y' = e^{-kx^2} - 2kx^2e^{-kx^2} \ge 0$$
 se $e^{-kx^2}(1 - 2kx^2) \ge 0$, $1 - 2kx^2 \ge 0$, $x^2 \le \frac{1}{2k}$

Quindi $y' \ge 0$ se $-\sqrt{\frac{1}{2k}} \le x \le \sqrt{\frac{1}{2k}}$, quindi per $0 \le x \le \sqrt{\frac{1}{2k}}$. Quindi la funzione è crescente per $0 \le x < \sqrt{\frac{1}{2k}}$ e decrescente per $x > \sqrt{\frac{1}{2k}}$: quindi $x = \sqrt{\frac{1}{2k}}$ è punto di massimo relativo (e assoluto). Pertanto:

Il rettangolo di area massima si ottiene per $x = \sqrt{\frac{1}{2k}}$, che coincide con l'ascissa del flesso del primo quadrante; data la simmetria del grafico il rettangolo di area massima ha un altro vertice nel flesso del secondo quadrante.

Il rettangolo di area massima è un quadrato se: $2x = e^{-kx^2}$, quindi se:

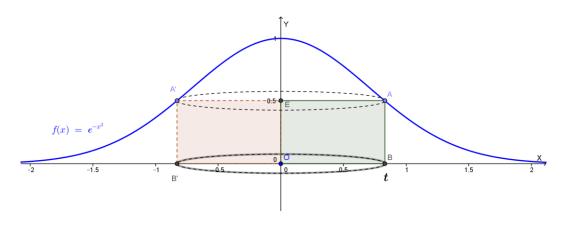
$$2 \cdot \sqrt{\frac{1}{2k}} = \frac{1}{\sqrt{e}}$$
, $\frac{2}{k} = \frac{1}{e}$, $k = 2e$.

Il rettangolo di area massima è un quadrato se k = 2e.

4)

Posto $G(t) = 2\pi \int_0^t x \cdot e^{-x^2} dx$, determina il valore di $\lim_{t\to +\infty} G(t)$, e interpreta il risultato in termini geometrici.

In base al metodo dei "gusci cilindrici", $G(t)=2\pi\int_0^t x\cdot e^{-x^2}dx$ rappresenta il volume del solido ottenuto dalla rotazione della regione di piano compresa fra il grafico della curva di equazione $y=e^{-x^2}$, l'asse delle x, l'asse delle y e la retta di equazione x=t.



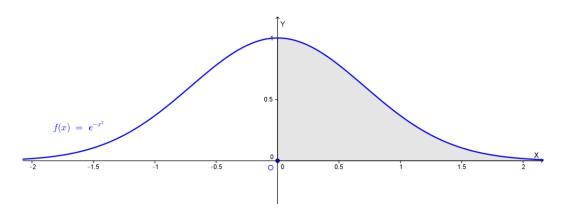
Risulta:

$$G(t) = 2\pi \int_0^t x \cdot e^{-x^2} dx = -\pi \int_0^t -2x \cdot e^{-x^2} dx = -\pi \cdot \left[e^{-x^2} \right]_0^t = -\pi \cdot \left(e^{-t^2} - 1 \right)$$

Pertanto:

$$\lim_{t \to +\infty} G(t) = \lim_{t \to +\infty} \pi (1 - e^{-t^2}) = \pi$$

Il risultato del limite rappresenta il volume del solido ottenuto dalla rotazione completa attorno all'asse y della regione di piano compresa fra il grafico della curva di equazione $y = e^{-x^2}$, l'asse delle y e l'asse delle x.



Nota

Approfondimento sui "gusci cilindrici":

http://www.matefilia.it/argomen/gusci-cilindrici/metodo-gusci-cilindrici.pdf

Con la collaborazione di Angela Santamaria