Liceo scientifico statale "G. B. Quadri"

ESAME DI STATO 2022

COMMISSIONI SC/SA – SEZ. XXX

SECONDA PROVA SCRITTA – MATEMATICA – 23/06/2022 TRACCIA 1

Il candidato (COGNOME E NOME - IN STAMPATELLO) quattro degli otto quesiti.				S	svolga, a scelta, uno dei due problemi e					
PROBLEMA	SCELTO	PROBLEMA 1			•	PROBLEMA 2 •				
QUESITI	SCELTI	Q1 •	Q2 •	Q1 •	Q2 •	Q1 •	Q2 •	Q1 •	Q2 •	

(METTERE UNA CROCETTA NEGLI SPAZI APPROPRIATI)

- NON SCRIVERE A MATITA
- NON USARE LA CANCELLINA, NÉ IL BIANCHETTO
- NON SCRIVERE, NÉ DISEGNARE, USANDO IL COLORE ROSSO

SPAZIO RISERVATO AI DOCENTI
NUMERO DI FOGLI UTILIZZATI
CONSEGNATO ALLE ORE

PROBLEMA 1

In un piano cartesiano ortogonale Oxy, si considerino le parabole C_1 , C_2 di equazione rispettivamente:

$$C_1$$
: $y - x^2 = 0$ e C_2 : $y^2 + 8x - 6y - 3 = 0$

- a) Si verifichi che le due curve sono tangenti in A(1;1) e che hanno in comune un ulteriore punto B.
- b) Detta R la regione finita di piano delimitata dalle due parabole, si conduca per A una retta r che incontri l'asse delle ordinate in S e il contorno di R, oltre che in A, in un ulteriore punto P. Si determini la funzione

$$f(m) = \frac{AP}{AS}$$

ove m è il coefficiente angolare della retta r.

c) Si studi la funzione

$$f(x) = \begin{cases} \frac{8 - 4x}{x^2} & \text{per } x \in] - \infty; -2[\\ 2 - x & \text{per } x \in [-2; 2]\\ \frac{4x - 8}{x^2} & \text{per } x \in]2; + \infty[\end{cases}$$

(che, a parte la sostituzione della variabile, è la soluzione del punto precedente), determinandone in particolare il massimo assoluto e gli eventuali massimi relativi. Si tracci il grafico della funzione.

d) Si consideri la regione Δ , nel semipiano $x \geq 2$, delimitata dal grafico di f e dall'asse x. Si calcoli il volume del solido Σ che si genera con una rotazione completa di Δ intorno all'asse x, verificando che, pur essendo illimitato, Σ possiede volume finito.

PROBLEMA 2

Sia data la famiglia di funzioni $f(x) = axe^{-bx^2}$, con $a, b \in R$.

- a) Determinare a e b in modo che f(x) abbia un massimo relativo per $x = \frac{\sqrt{6}}{6}$ e che il suo valore medio nell'intervallo [0;1] sia $\frac{e^3-1}{3e^3}$.
- b) Avendo dimostrato che i valori di a e b di cui al punto precedente sono a=2 e b=3, sia f(x) la funzione corrispondente a tali valori. Studiare la funzione fino alla derivata seconda.
- c) Ricavare, se esiste, il limite

$$\lim_{k \to +\infty} \int_0^k f(x) \, dx$$

e dare un significato geometrico allo stesso.

d) Sia P un punto del grafico di f(x) appartenente al primo quadrante e siano Q e R le sue proiezioni sugli assi x e y, rispettivamente. Ricavare P in modo che sia massima l'area del rettangolo PQOR.

QUESITO 1

Alfonsina e Bruno giocano lanciando un dado (regolare). Ogni volta che esce un numero inferiore a 3 si assegnano due punti ad Alfonsina, se, invece, esce un numero maggiore di 2 si assegna un punto a Bruno. Vince il primo che totalizza 6 punti.

- a) Qual è la probabilità che entrambi realizzino almeno 1 punto nel corso della partita?
- b) Qual è la probabilità che, in un certo momento della partita, Alfonsina conduca per 4 a 3?

QUESITO 2

Determinare l'equazione cartesiana della superficie sferica avente centro nel punto C(0;1;1) e raggio pari alla distanza fra il punto C e la retta di equazioni parametriche

$$\begin{cases} x = -1 - 2t \\ y = 4 \\ z = 4 + t \end{cases}$$

QUESITO 3

Sia *ABC* un triangolo equilatero, di lato *a*. Fra i rettangoli inscritti nel triangolo, aventi un lato sulla base *AB*, determinare: a) quello di area massima; b) quello di diagonale minima.

QUESITO 4

Dimostrare che ogni soluzione dell'equazione differenziale $x^2y' + 2xy = 1$, nell'intervallo x > 0, tende a zero per x tendente a $+\infty$ e determinare la soluzione y che soddisfa la condizione y(2) = 2y(1).

QUESITO 5

a) Dimostrare che la funzione

$$F(x) = \int_2^x \frac{1 + \ln t}{t^2} dt$$

è invertibile nell'intervallo $\left[\frac{1}{a}; +\infty\right[$.

b) Detta G l'inversa di F, risolvere l'equazione F(x) = 0 e calcolare G'(0).

QUESITO 6

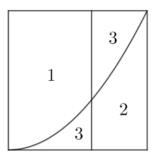
Verificare se esiste un valore del parametro a in modo che la funzione

$$f(x) = \begin{cases} a \ln(ex^2 - x^2 + 1) & \text{se } x \le 0\\ (2a + 1)e^{1 - \frac{1}{x}} & \text{se } x > 0 \end{cases}$$

soddisfi le ipotesi del teorema di Rolle nell'intervallo [-1; 1].

QUESITO 7

Nel piano cartesiano Oxy, si considerino: il quadrato avente come diagonale il segmento di estremi A(1;0) e B(0;1), la parabola di equazione $y=x^2$ e una generica retta verticale, di equazione x=t, con $t\in]0;1[$.



La figura così ottenuta viene utilizzata come bersaglio per il gioco delle freccette, con i punteggi descritti nella rappresentazione grafica soprastante. Determinare il valore di t che rende minima la probabilità di realizzare un lancio da tre punti e ricavare, per tale valore del parametro t, la distribuzione di probabilità relativa ad un lancio.

QUESITO 8

Considerata la regione R, nel primo quadrante, delimitata dagli assi coordinati e dalla parabola γ di equazione $\gamma = 6 - x^2$, calcolare:

- a) il volume del solido S_1 generato dalla rotazione completa di R attorno all'asse x;
- b) il volume del solido S_2 generato dalla rotazione completa di R attorno all'asse y;
- c) il volume del solido S_3 generato dalla rotazione completa di R attorno alla retta y=6.