

www.matefilia.it

Scuole italiane all'estero (Calendario australe) 2009 - Quesiti

QUESITO 1

Si risolva la seguente l'equazione: $sen^4x + cos^4x + 2sen^2xcos^2x = 3^x$.

L'equazione è equivalente a:

$$(sen^2x + cos^2x)^2 = 1 = 3^x$$
, da cui $x = 0$.

QUESITO 2

Dopo aver illustrato il significato di funzione inversa si dica, motivando la risposta, se è vero che: $arcsen\left(sen\left(\frac{2\pi}{3}\right)\right) = \frac{2\pi}{3}$.

Data una funzione $f: A \to B$, essa si dice invertibile se esiste una corrispondenza biunivoca fra dominio e codominio; la funzione $f^{-1}: B \to A$, che ha come dominio il codominio di e f e come codominio il dominio di f, si dice funzione inversa di f. Una funzione strettamente monotona in un intervallo è invertibile (non è detto il viceversa). Posto y = f(x) = senx, essa è invertibile nell'intervallo $\left[\frac{\pi}{2}; \frac{3}{2}\pi\right]$, dove è strettamente decrescente e la sua funzione inversa è $x = f^{-1}(y) = arcseny$. In base alla definizione di funzione inversa si ha:

$$x = f^{-1}(y) = f^{-1}(f(x))$$

Nel nostro caso è $x = \frac{2\pi}{3}$, quindi:

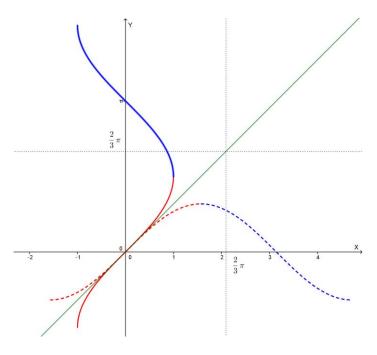
$$\frac{2\pi}{3} = arcsen\left(sen\left(\frac{2\pi}{3}\right)\right).$$

N.B.

Se si considera come intervallo di invertibilità del seno l'intervallo "classico" $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ l'uguaglianza non è vera, poiché $\frac{2\pi}{3}$ non appartiene a tale intervallo; in tal caso si avrebbe:

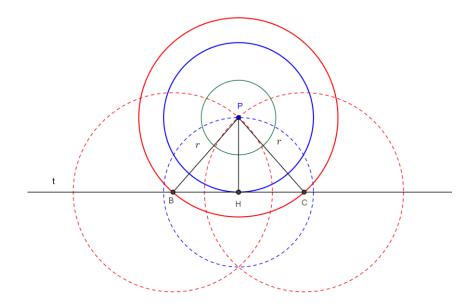
$$arcsen\left(sen\left(\frac{2\pi}{3}\right)\right) = arcsen\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$$

Rappresentiamo le due situazioni nel seguente grafico:



QUESITO 3

Sia t una retta e P un punto non appartenente ad essa. Si dimostri che le circonferenze di assegnato raggio r, passanti per P e con centro su t sono al più due.



I centri delle circonferenze richieste sono i punti di t che distano r da P, quindi sono dati dalle (eventuali) intersezioni della circonferenza di centro P e raggio r con la retta t; tale circonferenza può avere al massimo due intersezioni con t, quindi i possibili centri sono al più due e quindi esistono al più due circonferenze che soddisfano le condizioni poste.

In particolare:

Se la distanza PH di P da t è maggiore di r: nessuna circonferenza; se la distanza PH di P da t è uguale ad r: una circonferenza (centro H e raggio r=PH); se la distanza PH di P da t è minore di r: due circonferenze (raggio r e centro nei punti B e C di intersezione fra t e la circonferenza di centro P e raggio r).

QUESITO 4

Si determinino a e b in modo che il diagramma della funzione $f(x) = \frac{ax^2 + bx}{2x - 5}$ abbia come asintoto obliquo la retta di equazione y = 3x + 2.

Si tratta di una funzione razionale fratta in cui il grado del numeratore supera di 1 il grado del denominatore (con a non nullo). Deve risultare:

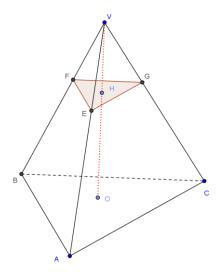
$$m = 3 = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{ax^2 + bx}{2x^2 - 5x} = \frac{a}{2} : \quad quindi \ a = 6$$

$$q = 2 = \lim_{x \to \infty} [f(x) - mx] = \lim_{x \to \infty} \left[\frac{6x^2 + bx}{2x - 5} - 3x \right] = \lim_{x \to \infty} \left[\frac{bx + 15x}{2x - 5} \right] = \frac{b + 15}{2} = 2$$

$$quindi \quad b = -11$$

QUESITO 5

Una piramide di altezza h viene secata con un piano α parallelo al piano β della base in modo da ottenere un tronco di piramide il cui volume è 7/8 del volume della piramide. Qual è la distanza tra α e β ?



La piramide P_1 di base EFG e vertice V ha volume uguale ad 1/8 del volume della piramide P_2 di base ABC e altezza h. Le due piramidi sono simili e quindi il rapporto fra i loro volumi è uguale al cubo del rapporto di similitudine k; quindi:

$$k^{3} = \left(\frac{1}{8}\right)^{3} = \frac{V(P_{1})}{V(P_{2})}, \quad quindi \quad k = \frac{1}{2}$$

Il rapporto fra le distanze VH e VO è uguale al rapporto di similitudine, pertanto:

$$\frac{VH}{VO} = k = \frac{1}{2}$$
, $VH = \frac{1}{2}VO = \frac{1}{2}h$

La distanza OH fra i due piani è quindi: $OH = VO - VH = h - \frac{1}{2}h = \frac{1}{2}h$.

QUESITO 6

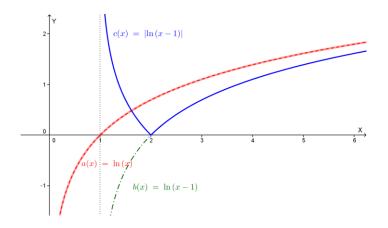
Si disegni il grafico della funzione: $y = |\log(x - 1)|$.

Intendiamo log come logaritmo naturale (ln).

Tracciamo prima il grafico della funzione $a(x) = \ln(x)$.

Deduciamo da questo grafico quello di $b(x) = \ln(x - 1)$ traslandolo a destra di 1.

Deduciamo infine il grafico della funzione richiesta confermando la parte positiva di b(x) e ribaltando rispetto all'asse x la parte negativa:



QUESITO 7

Si determini, motivando la risposta, il periodo della funzione: y = sen(2x + 3).

Ricordiamo che se la funzione g(x) è periodica di periodo T, la funzione g(kx) è periodica con periodo $T' = \frac{T}{k}$. Nel nostro caso la funzione h(x) = sen(x) ha periodo $T = 2\pi$, la funzione g(x) = h(x+3), ha ancora periodo $T = 2\pi$ (le traslazioni non

alterano il periodo), f(x) = g(2x) = sen(2x + 3) avrà periodo $T' = \frac{2\pi}{2} = \pi$.

Il periodo della funzione y = sen(2x + 3) è π .

Dimostrazione diretta:

Posto f(x) = sen(2x + 3), dobbiamo determinare il più piccolo numero reale positivo T per cui: f(x + T) = f(x). Risulta:

$$f(x+T) = sen[2(x+T)+3] = sen(2x+3+2T) = sen(2x+3)$$
 se $2T = 2\pi$, $T = \pi$.

QUESITO 8

In un piano riferito ad un sistema di assi cartesiani Oxy si tracci il diagramma del luogo dei punti P del quarto quadrante che hanno dall'origine una distanza quadrupla di quella dal punto (2; 0).

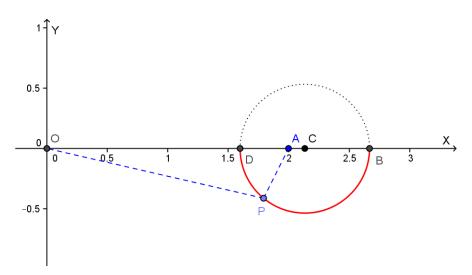
Posto P=(x; y), con x>0 e y<0 ed indicato con A il punto (2; 0), deve essere:

PO = 4PA, quindi: $PO^2 = 16PA^2$ da cui:

$$x^2 + y^2 = 16[(x-2)^2 + y^2],$$
 $15x^2 + 15y^2 - 64x + 64 = 0$, con $x > 0$ e $y < 0$

Il luogo è quindi la semicirconferenza del quarto quadrante di centro (32/15; 0) e raggio r pari a:

$$r = \sqrt{\frac{a^2}{4} + \frac{b^2}{4} - c} = \sqrt{\frac{1024}{225} - \frac{64}{15}} = \frac{8}{15}$$



Con la collaborazione di Angela Santamaria