ESAME DI STATO: Indirizzo Scientifico

Sessione suppletiva 2010

SECONDA PROVA SCRITTA

Tema di Matematica

(AMERICA- emisfero australe)¹

Il candidato risolva uno dei due problemi e risponda a 4 degli 8 quesiti del questionario. Tempo concesso: 6 ore.

Problema 1

In un sistema di riferimento cartesiano Oxy, si consideri la parabola λ di equazione $y=kx^2$, dove k>0.

- a) Sia P un punto di λ del I quadrante e siano A e B le proiezioni di P rispettivamente sugli assi x e y. Si considerino le due regioni in cui λ divide il rettangolo OAPB e se ne calcolino le rispettive aree.
- b) Le due regioni di cui al punto precedente, ruotando intorno all'asse x, generano due solidi. Quale è il rapporto dei loro volumi?
- c) Sia S la regione compresa tra λ e la retta r di equazione y = 3. Si determini k in modo la massima area tra quelle dei rettangoli aventi un lato su r e inscritti in S sia uguale a S.
- d) Si dimostri che le rette tangenti a λ condotte da un punto qualsiasi della retta y = -1/(4k) sono tra loro perpendicolari.

Problema 2

Nel piano, riferito ad assi cartesiani Oxy:

a) si disegni la curva Γ di equazione

$$y = \sqrt[3]{x^2}$$

e, in particolare, si dica se ammette estremi relativi o flessi.

- b) Si scriva l'equazione della retta t tangente alla curva Γ nel suo punto di ascissa 8 e si determinino le coordinate dell'ulteriore punto in cui t incontra Γ .
- c) Si consideri il fascio di circonferenze tangenti nell'origine all'asse x e tra esse si determini quella che incontra Γ in due punti A e B diametralmente opposti. Si denoti con Λ tale circonferenza.
- d) Si calcoli l'area delle tre parti in cui il cerchio, di cui Λ è la circonferenza, è suddiviso dagli archi OA e OB di Γ .

Questionario

1. Sia n > 0. Si dimostri che è

$$n! > 2^{n-1}$$
.

- 2. Di tutti i coni inscritti in una sfera di raggio r, qual è quello di superficie laterale massima?
- 3. Si determini il punto della parabola $y = 2x^2$ più vicino al punto di coordinate (-2, -2).
- 4. Si discuta l'equazione

$$x^2 - (k-1)x + 2 = 0$$
 con $0 \le x \le 2$.

¹ Testo tratto da http://www.batmath.it/esame/temi/tutti_temi.pdf

5. Si dica, giustificando la risposta, se sono esatte le uguaglianze seguenti:

$$\arcsin(\sin(-0.3)) = -0.3;$$
 $\arccos(\cos(-0.3)) = -0.3;$ $\sin(\arcsin(-0.3)) = -0.3;$ $\cos(\arccos(-0.3)) = -0.3.$

6. Si determini il periodo della funzione

$$f(x) = \cos(3x) - 2\sin(2x) - 2\tan\frac{x}{2}$$
.

- 7. Si determini l'equazione della normale alla curva $y = e^x$ nel suo punto di ascissa $x = \ln 3$.
- 8. Si calcoli

$$\lim_{n\to\infty} \left[\frac{1}{n!} \binom{n}{k} \right].$$