LICEO SCIENTIFICO STRAORDINARIA 2023 - PROBLEMA 1

Si consideri la famiglia di funzione $f_n(x) = 2 - \frac{3}{x} + \frac{3}{x^n}$ con $n \in \mathbb{N}$ e n > 1.

a)

Verificare che tutte le curve rappresentate dalle funzioni della famiglia $f_n(x)$ passano per uno stesso punto e scrivere le sue coordinate. Determinare, in funzione del parametro n, le ascisse degli estremi e dei flessi e calcolarne il limite, con $n\to\infty$. Scrivere le equazioni degli asintoti e tracciare i grafici delle funzioni f_n , evidenziando le differenze tra i casi in cui n è pari da quelli in cui n è dispari.

$$y = f_n(x) = 2 - \frac{3}{x} + \frac{3}{x^n}$$
 con $n \in \mathbb{N}$ e $n > 1$

Con n=2 abbiamo: $y = 2 - \frac{3}{x} + \frac{3}{x^2}$ e con n=3: $y = 2 - \frac{3}{x} + \frac{3}{x^3}$. Intersechiamo queste due curve:

$$\begin{cases} y = 2 - \frac{3}{x} + \frac{3}{x^2} \\ y = 2 - \frac{3}{x} + \frac{3}{x^3} \end{cases} \Rightarrow 2 - \frac{3}{x} + \frac{3}{x^2} = 2 - \frac{3}{x} + \frac{3}{x^3}, \quad +\frac{3}{x^2} = +\frac{3}{x^3}, \quad x = 1, \quad quindi: y = 2 \end{cases}$$

Verifichiamo che il punto (1; 2) appartiene a tutte le curve:

$$2 = 2 - \frac{3}{1} + \frac{3}{1^n}$$
, $2 = 2$: verificato per ogni n.

Quindi tutte le curve passano per il punto di coordinate (1; 2).

Cerchiamo le ascisse degli estremi e dei flessi delle curve in funzione di n.

$$y = 2 - \frac{3}{x} + \frac{3}{x^n}$$

Dominio: $x \neq 0$ (per tali valori la generica funzione è continua e derivabile due volte, quindi nelle ascisse degli estremi si deve annullare la derivata prima e nelle ascisse dei flessi la derivata seconda).

$$y' = \frac{3}{x^2} - \frac{3n}{x^{n+1}} = 0, \quad x^{n-1} - n = 0, \qquad x^{n-1} = n$$

$$y' \ge 0, \quad \frac{x^{n-1} - n}{x^{n+1}} \ge 0; \text{ se n è dispari } y' \ge 0 \quad se \quad x^{n-1} - n \ge 0, \quad x \le -\frac{n-1}{\sqrt{n}} \quad vel \quad x \ge \frac{n-1}{\sqrt{n}} :$$

$-{}^{n-1}\sqrt{n} \qquad \qquad 0$			0 "-	$\sqrt[n-1]{n}$		
N	+	-	-	+		
D	+	+	+	+		
y'	+	-	-	+		
M				m		

Quindi **per n dispari** la funzione cresce se $x < -^{n-1}\sqrt{n}$, decresce per $-^{n-1}\sqrt{n} < x < 0$ *e per* $0 < x < ^{n-1}\sqrt{n}$, cresce per $x > ^{n-1}\sqrt{n}$. Perciò $x = -^{n-1}\sqrt{n}$ è punto di massimo relativo e $x = ^{n-1}\sqrt{n}$ è punto di minimo relativo.

Per n pari $y' \ge 0$, $\frac{x^{n-1}-n}{x^{n+1}} \ge 0$ per x < 0 e per $x \ge \sqrt[n-1]{n}$ perciò:

la funzione cresce se x < 0, decresce per $0 < x < \sqrt[n-1]{n}$ e cresce per $x > \sqrt[n-1]{n}$. Pertanto $x = \sqrt[n-1]{n}$ è punto di minimo relativo.

	0			$\sqrt[n-1]{n}$	
N	-		-	+	
D	-		+	+	
y'	+		-	+	
7 m					

Riepilogando:

se n'è pari un estremo per $x = \sqrt[n-1]{n}$ (minimo relativo)

se n è dispari abbiamo due estremi di ascisse: $x = -^{n-1}\sqrt{n}$ (punto di massimo relativo) e $x = -^{n-1}\sqrt{n}$ (punto di minimo relativo).

Calcoliamo i limiti richiesti:

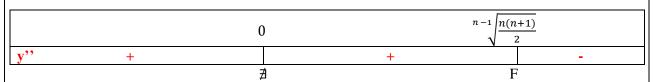
Per n pari: $\lim_{n\to\infty} {}^{n-1}\sqrt{n} = \lim_{n\to\infty} \left(n^{\frac{1}{n-1}}\right)$: $F.I \otimes^0$; $\lim_{n\to\infty} (e)^{\ln n^{\frac{1}{n-1}}} = \lim_{n\to\infty} (e)^{\frac{1}{n-1}\ln n} = \lim_{n\to\infty} e^{\left(\frac{\ln n}{n-1}\right)} = e^0 = 1$ (ricordiamo che n-1 è infinito di ordine superiore rispetto a $\ln n$)

Per n dispari: $\lim_{n\to\infty} \left(\pm^{n-1}\sqrt{n}\right) = \pm 1$ (i passaggi sono uguali a quelli fatti per n pari).

$$y'' = -\frac{6}{x^3} + \frac{3n(n+1)}{x^{n+2}} = 0, \qquad -2(x^{n-1}) + n(n+1) = 0, \qquad x^{n-1} = \frac{n(n+1)}{2}$$

$$y'' \ge 0$$
 se $\frac{-2(x^{n-1}) + n(n+1)}{x^{n+2}} \ge 0$; se n è pari $y'' \ge 0$ per $-2(x^{n-1}) + n(n+1) \ge 0$: $x \le \sqrt[n-1]{\frac{n(n+1)}{2}}$

(con $x \neq 0$) perciò $x = \sqrt[n-1]{\frac{n(n+1)}{2}}$ è punto di flesso:



Se n è dispari il numeratore è positivo per $-\frac{n-1}{\sqrt{\frac{n(n+1)}{2}}} < x < \frac{n-1}{\sqrt{\frac{n(n+1)}{2}}}$

ed il denominatore è positivo per x>0 perciò y''>0 se $x<-\frac{n-1}{\sqrt{\frac{n(n+1)}{2}}}$ e per

$$0 < x < \sqrt[n-1]{\frac{n(n+1)}{2}}$$
:

	$-\sqrt[n-1]{\frac{n}{\sqrt{n}}}$	n+1) 2	0	$\frac{\boxed{n(n+1)}}{2}$
N	-	+	+	-
D	-	•	+	+
y **	+	•	+	-
	I	\overline{r}_1	Á	$\overline{F_2}$

Pertanto il grafico volge la concavità verso l'alto se $x < -\frac{n-1}{\sqrt{\frac{n(n+1)}{2}}}$ e $0 < x < \frac{n-1}{\sqrt{\frac{n(n+1)}{2}}}$ e verso il

basso se
$$-\sqrt[n-1]{\frac{n(n+1)}{2}} < x < 0$$
 $e \ x > \sqrt[n-1]{\frac{n(n+1)}{2}}$; perciò $x = \pm \sqrt[n-1]{\frac{n(n+1)}{2}}$ sono punti di flesso.

se n è pari abbiamo un flesso per $x = \sqrt[n-1]{\frac{n(n+1)}{2}}$

se n è dispari abbiamo due flessi di ascisse: $x = \pm \sqrt[n-1]{\frac{n(n+1)}{2}}$

Calcoliamo ora limiti richiesti:

Per n pari:
$$\lim_{n \to \infty} \sqrt[n-1]{\frac{n(n+1)}{2}} = \lim_{n \to \infty} \left(\frac{n(n+1)\frac{1}{n-1}}{2}\right)$$
: $F.I = 0$; $\lim_{n \to \infty} (e)^{\ln \frac{n(n+1)\frac{1}{n-1}}{2}} = \lim_{n \to \infty} (e)^{\frac{1}{n-1}\ln \frac{n(n+1)}{2}} = \lim_{n \to \infty} (e)^{\frac{1}{n-1}\ln \frac{n(n+1)}{2} = \lim_{n \to \infty} (e)^{\frac{1}{n-1}\ln \frac{$

 $(n-1 \text{ è infinito di ordine superiore rispetto a } \ln \frac{n(n+1)}{2})$

Per n dispari: $\lim_{n\to\infty} \left(\pm \sqrt[n-1]{\frac{n(n+1)}{2}}\right) = \pm 1$ (i passaggi sono uguali a quelli fatti per n pari).

Cerchiamo ora gli asintoti

Siccome $\lim_{x \to \pm \infty} \left(2 - \frac{3}{x} + \frac{3}{x^n} \right) = 2$, tutte le curve hanno l'asintoto orizzontale di equazione y = 2. Non ci sono quindi asintoti obliqui.

Cerchiamo gli eventuali asintoti verticali:

$$\lim_{x \to 0} \left(2 - \frac{3}{x} + \frac{3}{x^n} \right) = \lim_{x \to 0} (2 - 3x^{-1} + 3x^{-n-1}) = \lim_{x \to 0} (2 - 3x^{-1} + 3x^{-n}) = \lim_{x \to 0} (3x^{-n}) = \infty$$

 $\lim_{x\to 0} \left(2-\frac{3}{x}+\frac{3}{x^n}\right) = \lim_{x\to 0} (2-3x^{-1}+3x^{-n-1}) = \lim_{x\to 0} (2-3x^{-1}+3x^{-n}) = \lim_{x\to 0} (3x^{-n}) = \infty$ (siccome -n < -1 per ogni n, essendo n > 1, x^{-n} è infinito di ordine superiore rispetto a x^{-1} per $x\to 0$). In particolare, per n pari sia il limite destro che il limite sinistro per $x\to 0$ è $+\infty$, se n è dispari il limite destro è $+\infty$, quello sinistro $-\infty$.

Tutte le curve hanno l'asintoto verticale di equazione x = 0.

Quanto ricavato sul dominio, sugli estremi, sui flessi e sugli asintoti ci permette di tracciare un grafico qualitativo delle funzioni.

Grafico delle funzioni per n pari (per esempio n=2):

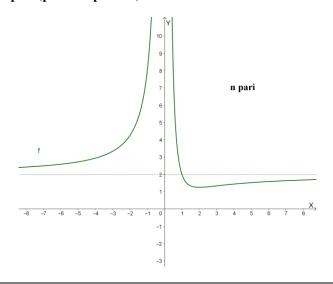
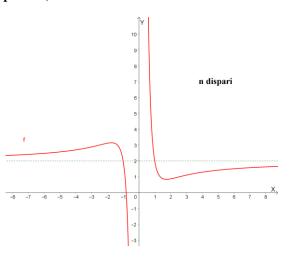


Grafico per n dispari (per esempio n=3):



b)

Si assuma n=3, studiare la funzione $f_3(x)$ e tracciare un suo grafico rappresentativo, dimostrando che ammette un unico zero di segno negativo. Discutere, al variare del parametro $k \in \mathbb{R}$, il numero e il segno delle soluzioni dell'equazione $f_3(x) = k$.

Per n=3 si ha:

$$y = 2 - \frac{3}{x} + \frac{3}{x^3}$$

Sfruttando quanto abbiamo già detto nel caso generale abbiamo:

Dominio: $x \neq 0$

 $\lim_{x \to \pm \infty} \left(2 - \frac{3}{x} + \frac{3}{x^3} \right) = 2$: asintoto orizzontale di equazione y = 2.

Non ci sono quindi asintoti obliqui.

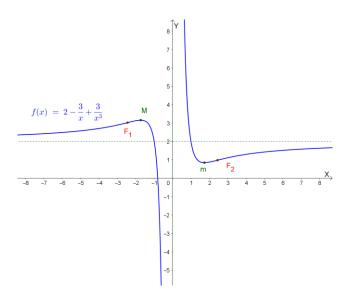
La funzione cresce se $x < -\sqrt{3}$, decresce per $-\sqrt{3} < x < 0$ *e per* $0 < x < \sqrt{3}$, cresce per $x > \sqrt{3}$. Perciò $x = -\sqrt{3}$ è punto di massimo relativo e $x = \sqrt{3}$ è punto di minimo relativo (ordinata del massimo: $2 + \frac{3}{\sqrt{3}} - \frac{3}{3\sqrt{3}} = 2 + \frac{2}{\sqrt{3}}$, ordinata del minimo $2 - \frac{3}{\sqrt{3}} + \frac{3}{3\sqrt{3}} = 2 - \frac{2}{\sqrt{3}}$).

In base a quanto visto nel caso generale, con n=3 abbiamo: il grafico volge la concavità verso l'alto se $x < -\sqrt{6}$ e $0 < x < \sqrt{6}$ e verso il basso se $-\sqrt{6} < x < 0$ e $x > \sqrt{6}$; perciò $x = \pm \sqrt{6}$ sono punti di flesso, con ordinate rispettivamente:

se
$$x = \sqrt{6}$$
, $y = 2 - \frac{3}{\sqrt{6}} + \frac{3}{6\sqrt{6}} = 2 - \frac{5}{2\sqrt{6}} \approx 0.98$

se
$$x = -\sqrt{6}$$
, $y = 2 + \frac{3}{\sqrt{6}} - \frac{3}{6\sqrt{6}} = 2 + \frac{5}{2\sqrt{6}} \approx 3.02$

Il grafico della funzione in oggetto è quindi il seguente:



Notiamo che il grafico taglia l'asintoto orizzontale in due punti; troviamone le ascisse:

$$2 - \frac{3}{x} + \frac{3}{x^3} = 2$$
, $\frac{3}{x^3} = \frac{3}{x}$, $x^2 = 1$: $x = \pm 1$.

Il grafico della funzione taglia l'asse delle x in un solo punto (di ascissa negativa, compresa fra -1 e 0), quindi la funzione ha un unico zero di segno negativo.

Discutiamo il numero ed il segno delle soluzioni dell'equazione $f_3(x) = k$.

Ciò equivale a studiare il numero ed il segno delle ascisse dei punti di intersezione fra i grafici delle funzioni di equazioni $y = f_3(x)$ ed y = k (rette parallele all'asse x).

Osservando il grafico di $y=f_3(x)$ e ricordando che l'ordinata del massimo relativo è $2+\frac{2}{\sqrt{3}}$ e quella del minimo relativo $2-\frac{2}{\sqrt{3}}$, si deduce che l'equazione $f_3(x)=k$ ha:

- 1 soluzione (negativa) per $k < 2 \frac{2}{\sqrt{3}}$
- 1 soluzione negativa ed una positiva (doppia) per $k = 2 \frac{2}{\sqrt{3}}$
- 3 soluzioni (una negativa ed una positiva) per $2 \frac{2}{\sqrt{3}} < x < 2$
- 2 soluzioni (una negativa e due positive) per k = 2
- 3 soluzioni (due negative ed una positiva) per $2 < k < 2 + \frac{2}{\sqrt{3}}$
- 1 soluzione negativa (doppia) ed una positiva per $k = 2 + \frac{2}{\sqrt{3}}$
- 1 soluzione positiva per $k > 2 + \frac{2}{\sqrt{3}}$

c)

Si consideri la funzione $g(x) = 2 - \frac{3}{x}$ e verificare che, $\forall x > 0$, vale la disuguaglianza

 $f_n(x) > g(x)$ indipendentemente dal valore di n. Si consideri l'integrale

$$I(t) = \int_1^t (f_n(x) - g(x)) dx$$

che esprime l'area della regione delimitata dai grafici delle funzioni f_n e $\,g\,$ e dalle rette di

equazioni x=1 e x=t, t>1. Si calcolino I(t) e il $\lim_{t\to+\infty}I(t)$, fornendo un'interpretazione geometrica del risultato ottenuto.

Verifichiamo che $f_n(x) > g(x) \forall x > 0$ indipendentemente dal valore di n.

$$2 - \frac{3}{x} + \frac{3}{x^n} > 2 - \frac{3}{x}$$
, $\frac{3}{x^n} > 0 \quad \forall x > 0$ indipendentemente da n: c.v.d.

Calcoliamo ora il seguente integrale:

$$I(t) = \int_{1}^{t} \left(f_{n}(x) - g(x) \right) dx = \int_{1}^{t} \left(2 - \frac{3}{x} + \frac{3}{x^{n}} - \left(2 - \frac{3}{x} \right) \right) dx = \int_{1}^{t} \left(\frac{3}{x^{n}} \right) dx = \int_{1}^{t} (3x^{-n}) dx = \left[\frac{3x^{-n+1}}{-n+1} \right]_{1}^{t} = \frac{3t^{-n+1}}{-n+1} - \frac{3}{-n+1} = I(t)$$

$$\lim_{t \to +\infty} \left(\frac{3t^{-n+1}}{-n+1} - \frac{3}{-n+1} \right) = \frac{3}{n-1} = \lim_{t \to +\infty} I(t)$$

Significato geometrico di tale limite: rappresenta l'area (finita per ogni n>1) della **regione aperta (con x>1)** delimitata dai grafici delle due funzioni e dalla retta di equazione x=1.

d)

Calcolare il
$$\lim_{x\to\infty} \frac{f_n(x)-2}{g(x)-2}$$

e verificare che il risultato non dipende da $n \in N$, n > 1.

$$\lim_{x \to \infty} \frac{f_n(x) - 2}{g(x) - 2} = \lim_{x \to \infty} \frac{2 - \frac{3}{x} + \frac{3}{x^n} - 2}{2 - \frac{3}{x} - 2} = \lim_{x \to \infty} \frac{-\frac{3}{x} + \frac{3}{x^n}}{-\frac{3}{x}} = \lim_{x \to +\infty} \frac{-\frac{3}{x}}{-\frac{3}{x}} = 1 = \lim_{x \to \infty} \frac{f_n(x) - 2}{g(x) - 2}$$

(**N.B.** Per $x \to \infty$ $\frac{3}{x^n}$ è infinitesimo di ordine superiore rispetto a $-\frac{3}{x}$, essendo n > 1).

Con la collaborazione di Angela Santamaria