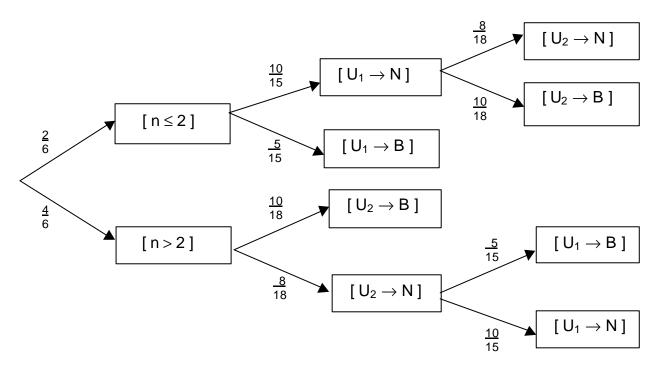
SOLUZIONE DEL PROBLEMA DI GIUGNO 2001

La situazione è illustrata dal seguente grafo ad albero:



che presenta sui nodi gli eventi:

[$n \le 2$] : "il lancio del dado ha dato come esito 1 o 2";

[n > 2]: "il lancio del dado ha dato come esito 3, 4, 5 o 6";

[$U_1 \rightarrow N$] : "dall'urna U_1 viene estratta una pallina nera";

 $[U_1 \rightarrow B]$: "dall'urna U_1 viene estratta una pallina bianca";

[$\mbox{U}_2 \rightarrow \mbox{N}$] : "dall'urna \mbox{U}_2 viene estratta una pallina nera";

 $[U_2 \rightarrow B]$: "dall'urna U_2 viene estratta una pallina bianca",

e su ciascun ramo la probabilità che avvenga l'evento indicato nel nodo successivo.

Consideriamo gli eventi rappresentati dai percorsi che dalla radice terminano con l'estrazione finale della pallina bianca o con estrazione finale dall'urna U_1 :

$$\begin{split} &U_1B = [\; n \leq 2\;] \cap [\; U_1 \to B\;] \\ &U_2B = \; [\; n > 2\;] \cap [\; U_2 \to B\;] \\ &U_1U_2B = [\; n \leq 2\;] \cap [\; U_1 \to N\;] \cap [\; U_2 \to B\;] \\ &U_2U_1N = [\; n > 2\;] \cap [\; U_2 \to N\;] \cap [\; U_1 \to N\;] \\ &U_2U_1B = [\; n > 2\;] \cap [\; U_2 \to N\;] \cap [\; U_1 \to B\;] \end{split}$$

per essi, trattandosi di prodotti logici di eventi indipendenti, si hanno le seguenti probabilità:

$$P(U_1B) = \frac{2}{6} \cdot \frac{5}{15}$$

$$P(U_2B) = \frac{4}{6} \cdot \frac{10}{18}$$

$$P(U_1U_2B) = \frac{2}{6} \cdot \frac{10}{15} \cdot \frac{10}{18}$$

$$P(U_2U_1N) = \frac{4}{6} \cdot \frac{8}{18} \cdot \frac{10}{15}$$

$$P(U_2U_1B) = \frac{4}{6} \cdot \frac{8}{18} \cdot \frac{5}{15}$$

Siano ora U₁ e B i seguenti eventi:

B: "la pallina dell'estrazione finale è bianca"; U_1 : "l'urna dell'estrazione finale è U_1 ",

che si possono scrivere come somma logica nel seguente modo:

$$B = (U_1B) \cup (U_2B) \cup (U_1U_2B) \cup (U_2U_1B)$$

$$U_1 = (U_1B) \cup (U_2U_1N) \cup (U_2U_1B)$$

Consideriamo inoltre l'evento:

 $\mathsf{B} \cap \mathsf{U}_1$.

Essendo U_1B , U_2B , U_1U_2B , U_2U_1N , e U_2U_1B a due a due incompatibili questo ultimo evento è equivalente a: $(U_1B) \cup (U_2U_1B)$ e possiamo scrivere:

$$P(B) = P(U_1B) + P(U_2B) + P(U_1U_2B) + P(U_2U_1B) = \frac{2}{6} \cdot \frac{5}{15} + \frac{4}{6} \cdot \frac{10}{18} + \frac{2}{6} \cdot \frac{10}{15} \cdot \frac{10}{18} + \frac{4}{6} \cdot \frac{8}{18} \cdot \frac{5}{15}$$

$$P(B \cap U_1) = P((U_1B) \cup (U_2U_1B)) = P(U_1B) + P(U_2U_1B) = \frac{2}{6} \cdot \frac{5}{15} + \frac{4}{6} \cdot \frac{8}{18} \cdot \frac{5}{15}$$

La probabilità richiesta dal problema è quella di U₁ "condizionata" all'evento B, per la quale vale:

$$P(U_1/B) = \frac{P(U_1 \cap B)}{P(B)} = \frac{\frac{2}{6} \cdot \frac{5}{15} + \frac{4}{6} \cdot \frac{8}{18} \cdot \frac{5}{15}}{\frac{2}{6} \cdot \frac{5}{15} + \frac{4}{6} \cdot \frac{10}{18} + \frac{2}{6} \cdot \frac{10}{15} \cdot \frac{10}{18} + \frac{4}{6} \cdot \frac{8}{18} \cdot \frac{5}{15}} = \frac{17}{57} .$$